
OLCF-6 Benchmark DNS Code 
 
Direct Numerical Simula.on of Turbulence 
Fluid turbulence is generally characterized as nonlinear, unsteady, disorderly fluctua6ons 
occurring across a vast range of scales in three-dimensions.  The Pseudo-Spectral DNS (PSDNS) 
code is designed on top of a purpose-built 3D FFT algorithm to inves6gate the fundamental 
behavior of turbulence at very high resolu6on through numerical integra6on of the Navier-Stokes 
equa6ons.  As is common with 3D FFT computa6ons, MPI communica6ons dominate the run6me 
(~76%) followed by the actual FFT computa6ons (~15%) and by the packing/unpacking opera6ons 
on the MPI send/receive buffers (~5%).  It is not uncommon for these three aspects of a 3D FFT 
algorithm to consume in excess of 96% of the overall run6me of the simula6ons.  Consequently, 
the PSDNS algorithm is an excellent bellwether of system performance for all scien6fic fields that 
must address large 3D FFTs or intense, large-scale MPI communica6ons.   
 
As part of the scaling studies, problem sizes of 20483, 40963, 81923, 163843, and 327683 grid 
points have been evaluated for performance on Fron6er with the 327683 case being the largest 
known DNS simula6on to date. As we double the number of points in each coordinate dimension, 
we’re increasing the problem size and the required computa6onal resources by a factor of 8.  Due 
to Fron6er’s unique configura6on and available memory, we’re able to run single precision 
computa6ons for the five problem sizes on 1, 8, 64, 512, and 4096 nodes respec6vely; double 
precision computa6ons naturally doubles the node requirements to 2, 16, 128, 1024, and 8192 
nodes.   
 
For the purpose of this OLCF-6 benchmark, a “minimalist” version of the PSDNS code was created.  
This benchmark PSDNS code differs from the fully-featured PSDNS code in the following ways: 

1. the benchmark code is "streamlined" and does NOT include the use of passive scalar 
transport and Lagrangian particle transport (these sections of code are active areas of 
research and have not yet been published) 

2. the benchmark code is purpose-built for GPUs, and all routines to compute the FFTs on 
the CPU with FFTW have been removed (OLCF focuses on the use of GPUs) 

3. the benchmark code uses hipfft for use on both AMD and Nvidia hardware whereas the 
full production code uses rocfft and cufft specifically for AMD and Nvidia hardware  

4. the benchmark code does not perform massive I/O 
 
The five problems sizes were evaluated with the benchmark PSDNS code using both single and 
double precision. Performance data for these scaling studies are include at the end of this 
document. 
 
With these node-counts in mind, advancing to the next problem size (655363 grid points) would 
require a ~4x increase in overall memory for single precision computa6ons and a ~8x increase for 
double precision computa6ons and applying the full-featured PSDNS code to this problem size 
would require twice these amounts (e.g. ~8x and ~16x respec6vely). 



"Minimalist" GPU-Only version of the Pseudo-Spectral DNS (PSDNS) code with 2D Domain 
Decomposi.on with the following features: 

• Wrifen in Fortran (see requirements below) 
• MPI for communica6ons from the CPU or GPU (selectable at run6me via the input file) 
• OpenMP for parallelizing loops on CPUs (s6ll a few remaining loops on the CPU) 
• OpenMP Offloading to accelerate loops on the GPUs 
• Extensive use of FFTs (via hipFFT) on the GPUs and ONLY on the GPUs 
• Uses hipfort to generate the Fortran interfaces for the library calls 

o hipfort performs the switch between cuFFT (Nvidia GPUs) and rocFFT (AMD GPUs) 
o See the Run Rules sec6on for guidance on modifying the code to use CUDA or 

OneAPI FFT instead of hipi. 
 
2D Domain Decomposi.on: 
The PSDNS code uses a 2D domain decomposi6on strategy to divide the domain across the MPI 
ranks evenly.  

 
 

At all 6mes, the data is split amongst the MPI ranks in two of the three coordinate direc6ons 
leaving one direc6on with full-length “pencils” of data for the FFT computa6ons.  Since FFTs are 
required in all three direc6ons, data must be exchanged between the MPI ranks to align the data 
into pencils whenever FFT computa6ons are required in a specific direc6on.   
 
PSDNS solu.on process: 
The PSDNS algorithm ini6alizes the domain in wavenumber space and advances the solu6on in 
6me with either a 2nd or 4th order Runge-Kufa (RK) algorithm.  In each RK stage, we start with the 
solu6on in wavenumber space and perform the following steps: 

• 3D FFT inverse transform to physical space 
• form nonlinear terms in physical space 
• 3D FFT forward transform to wavenumber space 
• Differen6ate 
• advance in 6me ... and then repeat for each RK stage 

 
Each 3D FFT inverse transform from wavenumber space to physical space requires: 

• Perform 1D C2C FFT in the y-direc6on 
• Pack send buffer, MPI AllToAll, unpack receive buffer 
• Perform 1D C2C FFT in the z-direc6on 
• Pack send buffer, MPIAllToAll, unpack receive buffer 
• Perform 1D C2R FFT in the x-direc6on 
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Similarly, each 3D FFT forward transform from physical space to wavenumber space requires: 
• Perform 1D R2C FFT in the x-direc6on 
• Pack send buffer, MPI AllToAll, unpack receive buffer 
• Perform 1D C2C FFT in the z-direc6on 
• Pack send buffer, MPIAllToAll, unpack receive buffer 
• Perform 1D C2C FFT in the y-direc6on 

 
In summary, each RK stage requires 6 separate FFT computa6ons and 4 MPI communica6ons, and 
we’re performing mul6ple RK stages every 6mestep of the solu6on process.  Hence, the overall 
3D FFT process consumes ~96% of the PSDNS run6me. 
 
Structure of the repo: 

1. “documenta6on” directory contains descrip6ons of the code and the benchmark cases 
and instruc6ons for building and running the code 

2. “scripts_fron6er” and “scripts_summit” directories contains machine-specific makefiles 
and scripts for seong the build/run environment, building hipfort, and building the hipi 
dns code 

3. “makefile” is a bare-bones makefile used only for basic func6ons like “make clean” 
4. “makefile_pieces” directory contains ini6aliza6on, basic rules, and build rules used by the 

machine-specific files in the “scripts_fron6er” and “scripts_summit” directories 
5. “src” directory contains the source code 
6. “extra_tools” directory contains a program that consolidates fine-grained MPI 6mings (see 

details below) 
7. “benchmarks” directory contains the single and double precision results for 5 problem 

sizes 
 
Requirements (this code is made specifically for GPUs): 

• Fortran compiler (2003 compliant) with OpenMP Offloading 
• MPI (preferably GPU-Aware) 
• Hipfort from AMD ROCm github site 
• either CUDA or ROCm 
• See the Run Rules sec6on for guidance on modifying the code to use CUDA or OneAPI FFT 

instead of hipi 
 
Steps (detailed below): 

1. Build hipfort 
2. Set your environment for building hipi (same env used when running executable) 
3. Set op6ons in makefile_ini6aliza6on and in the machine-specific makefile 
4. Build hipi DNS code 
5. Run cases 

 
  



Building hipfort: 
Since the hipi dns code is wrifen in fortran, it needs fortran interfaces for the hip libraries.  AMD 
provides these interfaces in hipfort along with each ROCm release on their github site.  Scripts to 
build hipfort on Summit (with the IBM XLCUF compiler) and Fron6er (with the CCE/15 FTN 
compiler) are included in the “scripts_fron6er” and “scripts_summit” directories.  These scripts 
are named build_hipfort_fron6er.sh and build_hipfort_summit.sh respec6vely.  In each of these 
scripts, the user needs to do the following: 

1. Set the VERSION of hip/rocm to load and hipfort to clone, build, and install 
2. Load the set of modules that will match the environment that will be used to build and 

run the dns code 
3. Define the loca6ons to build hipfort and then to install hipfort 
4. Run the script to build hipfort (version 5.4.0 requires ~45 minutes to build on Fron6er) 

 
SeKng the environment: 
The environment used for building hipfort is also needed for building and for running the DNS 
code.  At this 6me, seong the environment for building hipfort and the DNS code are handled 
separately and require the user to ensure they are the same.  Future versions of this repo will 
unify the build scripts to use a common approach to load the necessary modules.  
 
Scripts for Fron6er (AMD EPYC CPUs and MI250x GPUs) and Summit (IBM Power9 CPUs and 
Nvidia V100 GPUs) are included for building and running the DNS code.:  

• setUpModules_fron6er.sh  
• setUpModules_summit.sh 

 
Set op.ons in makefile_ini.aliza.on and in the machine-specific makefile: 
Scripts to build the code on Fron6er and Summit are included (build_dns_fron6er.sh and 
build_dns_summit.sh) in the “scripts_fron6er” and “scripts_summit” directories.  These scripts 
source the appropriate setUpModules script to load the correct modules and to set the 
appropriate environment variables and then use machine-specific makefiles (e.g. 
makefile.fron6er and makefile.summit in the “scripts_fron6er” and “scripts_summit” directories) 
to build the code. 
 
To avoid a lengthy makefile that includes all op6ons for mul6ple machines, several files are used 
to customize a makefile for a specific system.  The following makefile "pieces" are used: 
 

• makefile_ini6aliza6on : defines macros to enable/disable sec6ons of code 
• makefile_build_rules : defines the rules for building the object files and the executable 
• makefile_basic_rules : defines rules for cleaning/maintaining the directory 

 
These three files are in the “makefile_pieces” directory. Both makefile.fron6er and 
makefile.summit include these three files in addi6on to a machine-specific sec6on. Crea6ng a 
makefile.new_machine for a new system simply involves edi6ng the machine-specific sec6on. 
Alterna6vely, the user could create a single, large makefile with these basic files and mul6ple 
machine-specific sec6ons. 



 
A basic makefile that uses only makefile_basic_rules is available for quick opera6ons such as 
"make clean". 
 
Enabling or disabling features at compile .me in makefile_ini.aliza.on: 
Several features can be easily enabled/disabled at compile 6me in makefile_ini6aliza6on. This file 
is pre-set with the macros that are typically used for the PSDNS performance tests on GPUs. 
 
Since this version of the code is purpose-made for GPUs, OpenMP must be enabled. 
 
While double precision opera6ons are predominantly used in scien6fic efforts, most of the PSDNS 
produc6on runs use single precision opera6ons which allows the use of twice as many grid points 
or half the number of nodes (depending upon your perspec6ve) compared to using double 
precision opera6ons. As such, single precision opera6ons are the default for PSDNS, and enabling 
double precision opera6ons requires the user to uncomment the appropriate line in 
makefile_ini6aliza6on (should be obvious in the file). Test cases and 6mings for both single and 
double precision opera6ons on Fron6er are included in benchmarks/SINUSOIDAL_CASES 
directory. 
 
By default, the DNS code performs MPI communica6ons on one variable at a 6me for all three 
velocity components to stay under the 64 GB memory limit for each GCD on Fron6er and the 16 
GB limit on Summit.   
 
Detailed MPI 6mings are available if DETAIL_MPI is enabled in makefile_ini6aliza6on.  This is 
disabled by default since it significantly increases the run6me, but it provides detailed 
informa6on for all the mpi ranks.   If enabled, the code writes files to the “MPI_6mings” directory 
in your run6me directory.  The “MPI_stats.F90” file in the repo’s extra_tools directory will further 
reduce the data MPI_6mings into a more usable format.  
 
SeKng op.ons in the machine-specific makefile: 
Machine-specifc makefiles for Fron6er and Summit are included in the “scripts_fron6er” and 
“scripts_summit” directories.  Compiling flags, include paths, library paths, and machine-specific 
op6ons are set in the machine-specific makefiles.  Users need to pay afen6on to the following: 

1. HIP_BASE_PATH must point to your hipfort installa6on.   
2. OTHER_INC must contain “include” paths to HIP/ROCM and/or CUDA headers 
3. OTHER_LIBS must contain “lib” paths to HIP/ROCM and/or CUDA libraries 
4. GPU-specific macros needed by hipfort such as __HIP_PLATFORM_NVIDIA__ 
5. Macros such as CRAY_CCE and USE_MAP to address non-standard compiler func6ons 

 
Building the executable: 
The easiest way to build the code is to use the build_dns_fron6er.sh or build_dns_summit.sh 
script (included in the “scripts_fron6er” and “scripts_summit” directories).  These scripts source 
the appropriate setUpModules script, create the “.srcmake” directory if it doesn’t exist, performs 
a “make clean”, and builds the executable.  Each source code file is completely preprocessed for 



macros before being built.  The preprocessed files are wrifen to “.srcmake/src”, and the files in 
“.srcmake/src” are built into *.o object files.  So, if there is any confusion about whether or not a 
sec6on of code is built, users can inspect the files in “.srcmake/src”.   
 
To build the code: 

1. Copy/create a setUpModules.sh script in the directory immediately above “src” 
2. Copy/create a makefile.machine script in the directory immediately above “src” 
3. Copy/create a build_dns_machine.sh script in the directory immediately above “src” 
4. Set op6ons in makefile_pieces/makefile_ini6aliza6on and makefile.machine 
5. Run the build_dns_machine.sh (code usually builds in under a minute) 

 
Running the executable: 
The code requires 4 files: 

1. Submission script: “batch.sh” 
2. Parameter file: “input” 
3. Decomposi6on file: “dims” 
4. Detailed MPI 6mings instruc6on file: “input.mpistat” 

 
Each of the cases in the “benchmarks/SINUSOIDAL_CASES” directory contains the files used for 
the benchmark runs on Fron6er. 
 
“batch.sh” file: 
“batch.sh” sets the #SBATCH values, sources setUpModules.sh to set the run6me environment, 
sets addi6onal env variables, creates the “MPI_6mings” directory, and performs srun. 
 
“input” file: 
“input” sets the parameters for the simula6on.  The lines in the file alternate between text on 
one that describes the values on the next line.  So, each “odd” line (e.g 1st, 3rd, 5th, …) describes 
the contents of the “even” line (e.g. 2nd, 4th, 6th, …) that immediately follows it.   The problem size 
is defined by the first 4 values entered on the second line.  “nc” is set to “0” for all cases.  The 5th 
entry on the second line enables GPU-Direct MPI communica6ons and is set to “1” for all cases.  
“gpumpi” can be set to “0” to use CPU MPI communica6ons.   
 
The first entry on the fourth line of the “input” file sets the number of 6me steps to perform.  All 
cases use “nsteps = 20”.  The second entry on the fourth line is set larger than “nsteps” for these 
performance tests.   
 
The SINUSOIDAL_CASES all use “kinit = (-2, -2, -2) on the eighth line of the “input” file. 
“dims” file: 
The algorithm uses a 2D decomposi6on strategy to divide the domain amongst the MPI ranks 
evenly.  The “dims” file contains a single line with 2 integers.  The first value in the “dims” file is 
called “iproc” in the code, and the second value is called “jproc”.  For this brief discussion, let’s 
assign N=iproc and M=jproc.  If P MPI ranks are used, the code ensures P = N x M and N <= M. 
 



The MPI AlltoAll communica6ons are divided into “row” communica6ons and into “column” 
communica6ons.  Each “row” communicator contains N MPI ranks, and each “column” 
communicator contains M MPI ranks.  So, if N = 2, the “row” communica6ons occur between the 
two GCDs on a single AMD MI250x GPU (with the highest available bandwidth), and if N <= 8, the 
“row” communica6ons occur within a single Fron6er node.  In these cases, the “row’ 
communica6ons within a node are significantly faster than the “column” communica6ons which 
must exchange messages with other nodes across the broader (and slower bandwidth) network. 
 
For the tests on Fron6er, the smaller cases usually performed best with N = 2 while the larger 
cases performed best with N = 4 or N = 8.  See the Run Rules sec6on for guidance on acceptable 
varia6ons. 
 
“input.mpistat” file: 
If DETAIL_MPI is enabled in makefile_ini6aliza6on, then the code will be built with extra 
components that collect detailed 6mings from all MPI ranks at each 6mestep.  Addi6onally, the 
code will read the two integers in “input.mpistat”.  For simplicity, I will describe the values in 
reverse order. If the second number in the file is “0”, the code does not collect the extra 
informa6on from all the MPI ranks.  However, if the value is “1”, then at the end of the last 
6mestep, the code collects and writes all the data from all the MPI ranks to files in the 
“MPI_6mings” directory created by “batch.sh”. 
 
This is where the first number in “input.mpistat” becomes important.  For small cases, it’s usually 
not a problem when all MPI ranks write to file at the same, but you don’t want to do that for 
really large problems.  This is especially true for our largest problem size that uses 32768 MPI 
ranks or 65536 MPI ranks for the single and double precision tests respec6vely; we want to avoid 
all the MPI ranks wri6ng to file at the same 6me.  Instead, we evenly divide all the MPI ranks into 
small groups and assign one node in each group to collect all the data from the nodes in its group 
and to write a single file for its group.  The first number in “input.mpistat” specifies the number 
of nodes assigned to each small group.  So, if there are 4096 MPI ranks, and the first number in 
“input.mpistat” is 128, then there will be 32 groups (ie. 4096/128 = 32).  One rank in each group 
will collect the informa6on from the 128 nodes in the group and then write all the data to file 
resul6ng in a total of 32 separate files in the “MPI_6mings” directory.  The “MPI_stats.F90” file in 
the “extra_tools” directory is used to read these 32 files and to reduce the data into a usable 
form. 



Solu.ons from Fron.er in benchmarks/SINUSOIDAL_CASES 
A basic sinusoidal ini6aliza6on is used for these cases.  The cases are named for the problem size, 
and are computed with both single and double precision: 
 

Name Problem Size Single Precision Double Precision 
2048 20483 1 node (N1) 2 nodes (N2) 
4096 40963 8 nodes (N8) 16 nodes (N16) 
8192 81923 64 nodes (N64) 128 nodes (N128) 

16384 163843 512 nodes (N512) 1024 nodes (N1024) 
32768 327683 4096 nodes (N4096) 8192 nodes (N8192) 

 
For each case, 8 MPI ranks per node and 1 GCD per MPI rank are used, and approximately 42 GB 
of GPU memory is required for each MPI rank (with a single GCD).  Since each case has 20483 grid 
points on each node, small changes in the problem size rapidly increase the memory required for 
the simula6on.  As a comparison, the full-featured version of the PSDNS code can consume nearly 
60 GB of GPU memory per MPI rank (depending upon the enabled features) for similar cases and 
can require 8192 nodes for single precision produc6on simula6ons. This “minimalist” version of 
the PSDNS code was chosen to minimize the system requirements for the evalua6ons thereby 
providing greater flexibility to the evaluators.   
 
MPI message sizes and Simula.on run.mes: These values are for passing one variable at a 6me. 
We’re tes6ng an approach that may allow us to pass all three variables in a single communica6on 
(with less accumulated latencies) and will add those message sizes and 6mings when available.  
 
For single precision simula.ons while passing 1 variable at a .me.   
 

Problem Size 
(N3) 

#Ranks #Rows #Cols P2P Row Msg Size 
(MB) 

P2P Col Msg Size 
(MB) 

20483 8 2 4 2048 1024 

40963 64 2 32 2048 128 

81923 512 2 256 2048 16 

163843 4096 4 1024 1024 4 

327683 32768 4 8192 1024 0.5 

 
Run.mes for single precision simula.ons 
 

Problem Size 
(N3) 

#Nodes FFT (sec) Pack+Unpack 
(sec) 

MPI (sec) Other (sec) Total (sec) 

20483 1 1.806 1.121 2.298 0.324 5.548 

40963 8 1.912 0.800 8.155 0.416 11.284 

81923 64 1.455 0.628 8.873 0.410 11.366 

163843 512 2.184 0.607 10.464 0.432 13.687 

327683 4096 3.317 0.623 11.008 0.756 15.704 

 



 
 
 
Double precision simula.ons while passing 1 variable at a .me 
 

Problem Size 
(N3) 

#Ranks #Rows #Cols P2P Row Msg Size 
(MB) 

P2P Col Msg Size 
(MB) 

20483 16 2 8 2048 512 

40963 128 4 32 1024 128 

81923 1024 2 512 2048 8 

163843 8192 4 2048 1024 2 

327683 65536 8 8192 512 0.5 

 
 
Run.mes for double precision simula.ons 
 

Problem Size 
(N3) 

#Nodes FFT (sec) Pack+Unpack 
(sec) 

MPI (sec) Other (sec) Total (sec) 

20483 2 1.405 0.842 4.842 0.385 7.473 

40963 16 1.756 0.632 9.089 0.498 11.975 

81923 128 1.318 0.404 9.840 0.406 11.968 

163843 1024 1.788 0.425 10.384 0.433 13.031 

327683 8192 2.291 0.434 15.314 0.488 18.527 

 
 
  



Run Rules with minimal changes: 
To provide a consistent comparison of performance across systems, it is best to run the cases 
using the input file provided with each case in the repo.  However, changes should be limited to 
the following situa6ons that do not alter the source code: 
 

1. If you need a smaller problem due to memory limita6ons: 
a. Smaller problem sizes can be afempted by changing the values for nx, ny, and nz 

in the input file (the first three values on the 2nd line of the input file).  The values 
for nx, ny, and nz should be iden6cal and evenly divisible by the number of MPI 
ranks being used.  Further, values that are pure mul6ples of 2 are best. 

b. Alterna6vely, you can spread the current cases across more MPI ranks by 
increasing the values in the dims file. This process was done for the double 
precision computa6ons in this repo.  The values for nx, ny, and nz should be evenly 
divisible by the number of MPI ranks being used. 

 
2. If you can’t perform MPI communica6ons on the GPU or you simply want to inves6gate 

MPI on the CPU: 
a. Set gpumpi=0 in the input file (last entry on the 2nd line of the input file). 

 
3. If you want detailed informa6on about the MPI communica6ons:  

a. Uncomment the line for DETAIL_MPI in the makefile_ini6aliza6on file and rebuild 
the code.  Collec6ng this data will increase the run6me and should not be used 
during formal performance tes6ng. 

 
Without hipfort: 
If the user chooses not to use hipfort, then the user must supply their own fortran interfaces for 
the library func6ons.  The user must modify the source code and makfile to remove the 
dependence upon hipfort and to provide instruc6ons for the new fortran interfaces. 
 
Without hipfort and hipFFT: 
If the user chooses not to use hipFFT, then the user must modify the source code to use their 
desired package.  Using CUDA cuFFT instead of hipFFT is a rela6vely straighzorward change, but 
moving to another FFT implementa6on will require more work.  Regardless of the package being 
used, code modificaDons should be limited only to those changes that are absolutely required for 
correct funcDon.  Results from an extensively modified code will not be considered. 
 
  



Changes to the source code should be limited to the following non-cri6cal and cri6cal files in the 
src directory: 

1. Non-cri6cal to code: 
a. GPUmeminfo.F90 (this checks GPU memory usage) 
b. hipcheck.F90 (checks for hipi success) 
c. procinfo.F90 (uses a hip func6on to get device info for repor6ng purposes) 

2. Cri6cal to code: 
a. module.F90 (where we declare variables) 
b. epiw.F90 (i plans and workbuffer space is set here) 
c. itransform_vel.F90 (performs hipi Exec*** func6on) 
d. transform.F90 (performs hipi Exec*** func6on) 
e. kxtran_gpu.F90 (performs hipi Exec*** func6on) 
f. kxcomm1_gpu.F90 (performs hipi Exec*** func6on) 
g. kxcomm2_gpu.F90 (performs hipi Exec*** func6on) 
h. xktran_gpu.F90 (performs hipi Exec*** func6on) 
i. xkcomm1_gpu.F90 (performs hipi Exec*** func6on) 
j. xkcomm2_gpu.F90 (performs hipi Exec*** func6on) 

 
The files in the non-cri6cal list contain uses of hip func6onality that can be removed and/or 
altered without any impact on the performance of the PSDNS algorithm. However, files in the 
cri6cal list must be altered with extreme care to maintain correct func6on of the algorithm.   
 
For CUDA cuFFT: Since hipFFT uses interfaces similar to cuFFT’s interfaces, switching to cuFFT is 
straighzorward and requires the user to supply the fortran interfaces for the CUDA libraries. 
 
For another FFT implementa.on: Moving to another FFT implementa6on will likely require 
substan6al changes to the code. The majority of changes will revolve around crea6ng the plans 
and seong with the work buffers in epiw.F90.  Once the FFT plans are created, modifying the 
rest of the cri6cal files will involve changes required to perform a forward or inverse transform.  
The user will also need to provide the fortran interfaces to their FFT implementa6on. 
 
 
 
 
 
 
 


